Evaluating the Impacts of Nanotechnology via Thermodynamic and Life Cycle Analysis

Bhavik R. Bakshi and L. James Lee Department of Chemical & Biomolecular Engineering Ohio State University, Columbus, OH, 43210

Objectives

- Develop new
 - data,
 - tools and
 - techniques

for evaluating the

- life cycle environmental and
- economic aspects of nanomanufacturing

to encourage sensible engineering decisions and policy

- Specific goals
 - Develop life cycle inventory data of nanomanufacturing
 - Perform LCA of nano and traditional processes and products
 - Account for uncertainties
 - Perform Thermodynamic LCA and test hypotheses for evaluating life cycle impact with limited information

Methods

- Obtain nanomanufacturing data via experimentation and from collaborators
 - Synthesis of nanoclays and carbon nanofibres
 - Preparation of polymer nanocomposite
 - Manufacturing of selected nanoproduct
- Obtain latest fate, transport, and impact information of emissions from literature and collaborators
- Life Cycle Analysis of nanomanufacturing
 - Combine data from laboratory, LCA databases, economic models, etc. via multiscale LCA
 - Use data for Thermodynamic LCA
- Account for uncertainties
- Test thermodynamics-based hypotheses for evaluating life cycle impact of emerging technologies

Time Frame

Objectives	Year 1	Year 2	Year 3
1) Nanomanufacturing Modules			
2) Traditional LCA of consumable and			
durable nanoproducts and alternatives			
3) Exergy analysis of nanomanufacturing			
modules			
4) Thermodynamic LCA of			
Nanomanufacturing			
5) Case studies for testing proposed			
hypotheses			
6) Tool for LCA and economic analysis of			
polymer nanocomposites			

Relation to Protecting the Environment and Human Health

- Identifying and managing risk in research, development and commercialization of nanomanufacturing
- Preventing irrational optimism or unfounded fear about nanotechnology
- Balancing harm to the environment and human health with economic feasibility
- Developing techniques for gaining insight into the life cycle impact of emerging technologies
- Implementing a tool for LCA and economic analysis of polymer nanocomposites

